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Universal cubic eigenvalue repulsion for random normal matrices
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Random matrix models consisting of normal matrices, defined by the sole conghajht]=0, will be
explored. It is shown that cubic eigenvalue repulsion in the complex plane is universal with respect to the
probability distribution of matrices. The density of eigenvalues, all correlation functions, and level spacing
statistics are calculated. Normal matrix models offer more probability distributions amenable to analytical
analysis than complex matrix models where only a model with a Gaussian distribution is solvable. The
statistics of numerically generated eigenvalues from Gaussian distributed normal matrices are compared to the
analytic results obtained and agreement is sg8h063-651X%97)05801-7
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[. INTRODUCTION sion in the complex plane for ensembles of random normal
matrices will be shown. In Sec. Il the probability distribution
Random matrix theoryRMT) [1,2] has found much suc- in the space of matrices, all correlation functions, and the
cess in phenomenological models describing a wide varietgigenvalue densities will be obtained. In Sec. Il the level
of physical systems, from discretization of moduli spf8e  spacing statistics of the eigenvalues obtained will be derived.
to the statistics of the cells in the skin of a cucumpgr ~ The term level spacing is borrowed from the Wigner-Dyson
RMT is the study of eigenvalues derived from random en-ensembles and will represent here the spacing in the complex
sembles of matrices with stochastic elements specified by Blane. In Sec. IV eigenvalues of numerical generated normal
probability densityP(M)dM in the space of matrices. Most matrices will be studied and compared to the analytical re-
interest is in examining the properties of the eigenvaluesults.
induced from the transformation to the eigenvalue basis.
Early work consisted of using real symmetric, Hermitian,
unitary, and real quarternion matrics, the eigenvalues of
which are either real or unimodulafand termed one-
dimensional eigenvalues hegre We begin by defining the joint probability distribution
Recently several groups have begun to consider physicdjpd) within the space of normal matrices,
applications of matrix models composed of complex matri-
ces. Introduced in the ear!y 1960s by.Ginit{@, it took . Pn(M)=Cexg — Tr(V(M,M™)]. (1)
decades for others to consider applications. As the probabil-
ity distribution is not invariant under similarity transforma- ) ) » . )
tions, the diagonalizing parameters must be integrated out byNly potentials which are Hermitian will be considered,
brute force. It was found that only a distribution with a Y(M,M")=V(M,M")". As aresult, the joint probability dis-
Gaussian weightGinibre ensemblecould be solved. The ftrlbutlon for the eigenvalues will bg rotationally symmetric
Ginibre ensemble was later found to exhibit cubic eigenvaludn the complex plane. Normal matrices are the most general
repulsion in the complex plang?,2]. Such models are of matrlces WhIC? can be diagonalized by a unitary _transforma-
interest in characterizations of quantum chaos. Cubidion, M=UZU', so that the measure and the weight are in-
quasienergy level repulsion is a key signature of classicayariant. Thus it is §|mple to derive the Jacobian for the trans-
chaos within a quantum dissipative system, as defined b{Prmation to the eigenvalues. N _
Haake[7]. Proce_ed_lng analogously to the Herm_ltlan _matr|>_( ddss,
Normal matrices are discussed in most matrix theory textgh® metric in the space of normal matrices is defined as
(se€[8,9]). Defined by the sole constraint that they commute
with their adjoint, they have the property of being the most (ds)?=Tr[dM 'dM]=Tr(Ud(U'zU)uTud(U'z*U)uU")
general matrix that can be diagonalized by a unitary trans-

II. PROBABILITY DISTRIBUTIONS, CORRELATION
FUNCTIONS, AND EIGENVALUE DENSITIES

formation. The normal matrix model was first introduced in =Tr([dS,Z][dS,Z* ]+ ([dS,Z]dZz* +dZ[dS,Z"])

showing how the Laughlin wave function could be modeled

by it and offered some generalizations to inhomogeneous +]dz|®)=cY, |dSk(ze—2z) 2+, |dz]2 (2
1<k i

fields [10]. In [11] the statistics of eigenvalues of random
normal matrices were first explored.
In this paper the universality of cubic eigenvalue repul-where dS=UdU'=—dUU" is anti-Hermitian andc is an
overall constant.
Using the standard Riemannian volume form with this
*Electronic address: oas@ockham.stanford.edu metric, we get

1063-651X/97/561)/2057)/$10.00 55 205 © 1997 The American Physical Society



206 GARY OAS 55

du(M)—du(z)=(dQ)|A(2)[PdZPNdZIN - - - AdZD Similarly to Hermitian matrix models, whel—n eigen-
values are integrated out of the jpd, the determinant shrinks
NdZVA - AdZY, (3 by N—n columns and row$11]. This property allows the

n-point correlation function to be derived easily,
where d() is the volume of the unitary group B and

A(2) is the well known Van der Monde determinant, N! N )
. Rn(Zl, Ce ,Zn)E WJ' i:];'[i-j_ Edaidri PN(Z)
A@P=]] 22" @ "
—e 2 VdeKy(z 2l 10 (9
If we consider weights which are invariant under unitary

transformations we can factaol() out, The prefactoN!/(N—n)! is due to the ordering of eigen-
\ values. The two-point correlation function and eigenvalue
density are
PN(z)=C'|A(z)|2exp[ > V(z,2") |, (5) Y
=1 e~ V(@-V(w)
. — Ra(z,W) = —————[p(2)p(W) —K(z,w)K(W,2)],
whereC’ is a normalization constant. ™
Considering a Gaussian weig¥it=|z|?> we notice that the N-1 | 1
jpd is identical to Ginibre’s ensemble of complex matrices _e VDS ﬂ 10
[6]. The model with this weight function is termed the nor- p(z)=e “h N, - (19

mal Gaussian ensemb{BIGE). It is clear that Gaussian en-
sembles of complex matrices and the NGE are identical. Anyn deriving expressions for the correlation functions, or-
result derived here for the NGE will also be valid for Gini- thogonal monomials provide a more economical method.
bre’s ensemble of matrices. This is of little surprise sinceHowever, there are no simple recursion relations among the
TIM™M]=Tr{MM T]. monomials as there are for the orthogonal polynomials. No

The difference occurs when considering other ensemblesecursion relation implies no Christoffel-Darboux formula
For complex matrices the parameg(defined as the power and no asymptotic analysis. However, we can find analytical
of the Van der Monde determinant appearing in the jeda  results for finiteN. It is not necessary to examine the asymp-
function of the weight. In fact, only models involving Gauss- totic form of the monomials to get largé forms.
ian weights have ever been studied as this is the only non- In Table | various ensembles are defined and their corre-
trivial model which allows a separation of radial and angularsponding eigenvalue density and two-point correlation func-
parameters. For normal matricg=2 regardless of the tion are given. It should be noticed that several of these
weight and it is possible to study a wide variety of en-ensembles allovglobal closed forms in the limitN— oo,
sembles.

For matrix models with one-dimensional eigenvalues the Ill. LEVEL SPACING STATISTICS
traditional method of analysis employs a basis of orthogonal
polynomials. These allow the reduction of the determinant In order to study the properties of random matrices, the
upon integration of a number of eigenvaly&d. For com- statistical properties of the spacings between eigenvaares
plex eigenvalues we can also introduce an orthogonal basi$Vvel spacingsare examined. These statistics can be used as
If a polar basis is chosdiandPy(z) is rotationally symmet- & definition of quantum chaos. The dlstlnct|0n_ of cIaSS|_caIIy _
ric], it is simple to verify that thez’s themselves form an integrable a}nd chaotic systems can b_e. seen in a sgmlclassr
orthogonal basis. A basis @fthogonal monomials{ ¢}, is cally quantized system as the transition from Poisson to

defined, Wigner-Dyson statistics of the nearest neighbor distribution
of the energy level§13]. It has been showfi7] that if there

z! is dissipation in the system the level spacings undergo a
&(z)= N2 (6)  similar transition from a plane Poisson distributi@andom

' points in a plangto Ginibre’s distribution[6] generated by
an ensemble of random complex matrices.

The distributions for eigenvalues in the complex plane
will require the definition of statistical quantities analagous
N to those defined for Hermitian matrix modéB].

PR (i) The probability that no eigenvalue lies within a circle
Pn(2)=C'e ,21 @ 20deKn(z,2)]ijoin. (7) of radiuss centered upon the poimt, thegap distribution is
denoted a€£(s,w). A related quantitye(s,w, €) is defined

whereN, = [5dr?r?ex —V(r)] is a normalization constant.
The jpd can then be expressed as

where the “kernel” is as the probability that no eigenvalues lie within an annulus
N—1 of outer radiuss, inner radiuse, and centered on the point
Kn(zi.2)) ;o $1(2) i (2)- ® (i) The probability that no eigenvalues lie within this

same circle but one or more eigenvalues lie on the perimeter
The weight function is deliberately factored out of the kernelis denoted a§ (s,w).
since all of the angular dependence is contained wikhin (iii ) For an eigenvalue lying at the center of the circle and
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TABLE I. Ensembles of random normal matrices defined by their probability distribution. Also shown are the corresponding eigenvalue
density and two point function. For the NGE, Lagueare 0, and Legendre ensembles the closed form I&tgesult has been shown.

Ensemble Probability distribution Density, p(r)p(r)—R,
NGE g TM™M 1 1 R
g ?exp[—|z—w| ]
NQE efTr(MTMngTMTMM) e—rz—gr“ r2 efrffrgfgrlllr;l
- 2|N:*01 NG T Kn(Z1,2)Kn(Z,29)
Laguerre e~ TM™M) Y2+ (ar2)in(M ™)) e*’rf"“ZN_l r? sN-1 (rirp)* e "2 '2 72
27 =0 T[2+at2] =0 47T 21 +a+2] 2l +a+2]
Laguerre,a=0 e~ Tr(MTM)12 e’ e T2
i H * H *
stmr(r) —4ﬂ2r1r25|nr'(\/zlzz)smf’(\/zl Z,)
Legendre 1(evals e unit circle) 1 1 1
(112 |(1-22)1-Z2)?
Jacobi detL — (MM)7)° Ay 1 L us
2m =0 Bla+1,2+2] 47727170 Bla+1,2+2]B[a+1,2m+ 2]
Gen. G ; ~Tr M™M= (ar2)In(m Tm)] _2 —r%2
en. Gaussian e L r2 vy (r)%e 122z
P 1 . 1=0 a a
+ -+ = =
5 n21“|+2+11"m+2+1

no eigenvalues within the circle nor on the edge, this prob- All of the probability distributions considered here are
ability is denoted byH(s,w). symmetric in thez;, hence the derivation of the gap distri-

(iv) The level spacing probabilityp(s,w) is the most bution will be the same as if2] (see alsq11]). For the
guoted quantity and is defined as the probability that oneircle centered at the origin we have the following:
eigenvalue lies at the center and one or more lies on the

perimeter.
By taking differential areas at the center and at the perim- A
eter of this circle, we can obtain all of the probabilities from “ijll J2dxexp(— V(X)X
istribui - : E(s,0)= . 1
the gap distribution. The argument is analagous to Mehta’s (s,0) LU | Feaxexp=vio | (15

for one-dimensional eigenvalues and can be foundLit.

N wherex=|z|?.
E(s,W)= f {dZ}PN({Z})H [1-x(z,sw)], (12 As a check on our results,. we finq the spacing distribution
i=1 for the NGE and compare with previously known results. In
this case the probability distribution is translationally invari-
ant, hence the resu(tl5) is valid for all w. The result for

d .
F(s.w)=— ;-E(sw), ap Ml
ds
d ~2¢3—g>+1g7 119 .
Hs W)=~ S 2E(swe) 13 Ple)=2smsmtas = ws (10
de _
e=0
This result is the same as for complex matrices derived by
d d Haake[7]. The level spacing statistics at the origin for other
p(s,w)=— d—SH(s,W) =— FF(S,W,G) ensembles of normal matrices can be founfilif). Here we
€ e=0 are concerned with obtaining a universal result for the spac-
ing distribution.
=— —E(s,w,€) , (14 For ensembles other than Gaussian, the distributions are
dsde €=0 not translationally invariant and hence it will be necessary to

where y is the characteristic function andis taken as the resort to asymptotic approximations. Shifting the eigenvalue
radius of an infinitesmal area centered at the center of theoordinatez=z—w does not affect the measure or Van der
circle. These relations allow an elegant derivation of theMonde determinant. The gap distribution can then be ex-
level spacing distribution. pressed as,
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N - ~ d
E(sw)=[1 | dr?dg[1-xi(s?)1Pn(2) H(S,W):—FE(S,W.GHFO
=1 J0

N d Jszd ZJde N N2+N d
=Ngez) .9 | dbp(ztw) = —5—

& (s2dridr
X ,LZ ,LZ 2 J J da,dé,R,

N
=f {dzz}{l—_z Xi(s?)
0 i=1

N
+ > xi<s2>xj<s2>—---}5N<z>
i#]j=1

N
= 1_2 f d?z xip(z)

N _ X(Z3+W,Zo+ W)+ -+ | —g
+i2j j d?z,d?z xixiRa(zi ,Z)— -+, (17)
~ ) . . =—Nmp(w)+ m(N?+N)

where f(z)=f(z—w) and y; is the characteristic function

for the ith eigenvalue. In the limis— 0, and keeping only

the first two terms, we obtain SZdr%
limE(s,w)~1—Nws?p(w). (18 o 2
s—0

The level spacing distributiop(s,w) can be found via
Eq. (14). First the gap distributiorE(s,w,€) needs to be
derived. The derivation is the same as before except for
modification to the characteristic function. Starting from Eq.
(17), we have

The last term exploits the symmetry R,. For the level
gpacing we have

N p(s,w)=—w(N2+N)sf dasz(w,sé92+w)~-~
Esw,0)=1- 3 f o225 (2) (21

N
+Z_ d?zd°z;xi xjR(zi ,Z) — - - -, (19
= In order to find the lowest order contribution pgs,w) the
where nowy; = 9(52_ri2) 9(ri2— €2). As an intermediate step lowest order ofR, will need to be found. For a model with

we find weighte V(@ we have

r2r24+zw* +wzF +r2)™  (zwF +r2) (wzk +r2)m
NN, - NN,

N N
Ry(W,z+w)=e VW VW' (22)
I=1 m=0

The normalization factoN; is model dependent. It is easily It is also worthwhile to examine the case of real normal
verified that terms witH=0 andl=m vanish. All higher —matrices. Here the constraint is that the matrix commutes
order functions will have the same property. with its transpose. Such a matrix is diagonalizable by a uni-
The remaining angular integral ove®, in Eq. (21) in- tary transformation and will in general have complex eigen-
sures that no terms linear inor z* appear. It is also appar- Values. Retracing the steps above, it is easy to see that the
ent that the leading term in, cancels(terms to order®).  €igenvalues will also exhibit a minimum of cubic repulsion
This yields the lowest order @®, to bes?. Combined with N the complex plane.
Eq. (14), it is found that the nearest level spacing is cubic in
s ass—0. A few exceptions occur when the weight function
vanishes ag vanishes. Specifically the Jacobi, Laguerre
(a>1), and generalized Gaussiaa>1) will have a higher Whenever discussing random matrix theory, it is always
order repulsion. Our final result is as follows. Normal matrix of interest to include numerical simulation of large random
models with normalizable Hermitian weight functions havematrices. These are used to verify the analytical properties
eigenvalues experiencing a minimum of cubic repulsion inand supply support for asymptotic forms, conjectures, etc.
the complex plane. When dealing with normal matrices, however, we are in a

IV. NUMERICAL RESULTS
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predicament. Consider the following problem: Write down
an arbitrary 22 normal matrix that is neither Hermitian, T
unitary, nor real. It is not so simple. If one was asked to write
down a Hermitian matrix, it could be done without thinking
twice. For a normal matrix there is no simple parametriza-
tion. It would most likely require the commutator to be cal-
culated and a solution found by trial and error. Likewise, if
you want a computer to generate normal matrices you must
give it a parametrization. For a2 you can parametrize it

as follows, given thatnj;#n%, (remember there are
N2+N=6 independent real elements within a normal ma- 0.
trix):

Y- gy

¥ T
11,000 2x2 normal matrices

p(S)

o

Ny Ny2
n{i—nN
N= % [ M1 N22 ] 23
P! n*.—n* N22 ( )
117 N22
o e e
0 0.5 1 15 2 25
Spacing, S

For arbitraryN the constraint equations become nonlinear
anq highly coupled. Wg will ChOOSE.the folloyving parametri- FIG. 1. The level spacing distribution¥S) for N=2, analyti-
zation of normal matrices a“‘! define the Independen_t EIe(Eal form, and 11 000 numerically generated normal matrices.
ments as;; (those along the diagonal and above the diago-
nal). Define the elements that are constrained as(those
which lie below the diagonal For thejith element the con-

straint equation is

(iii) Calculate the commutator and define the error func-
tion tf N,N"]?=E. The error function will be minimized be-
low a choosen threshol@ value of 0.2 is used

(iv) Use gradient descent to adjust the constrained ele-
. . . ments. If the value oE is below the chosen threshold, then
njj (ny; —nn)+k§_:1 NNk — ZH NimNjm pass the matrix to the diagonalization routineElfhas not

- m converged after 500 iterations, then reset the matrix and go

i-1 N to step 2.

o Z fufi— 2 fnif i The results of a preliminary numerical study based on this
(Njj =i )1 k=1 m=j+1 algorithm are now presented. A full discussion of the algo-
ji-1 rithm used is to be found elsewhef&l]. Due to limited

— 2 (nﬁfn —ni’ff“)} (24) computational resources and time, only 50 matrices of size
I=i+1 200 X 200 have been analyzed. The level spacing statistics

for the generated matrices is compared to the analytical re-

Notice that the term in the first bracket contains only in-Sult.

dependent elements. With this parametrization the probabil- Before attempting to generate large normal matrices, the
ity of obtaining normal matrices which are Hermitian, uni- 8lgorithm was checked with 22 matrices. As these were

tary, orthogonal, or real symmetric matrices become<£asily produ_ced, 11 000 were generated and compared to the
infinitesimal for largeN. The subspaces for these types of 8xact analytical result,
matrices within the space of normal matrices are of much
lower dimensionality. There are many solutions to this non- 72s3 , [8?
linear equation. Another method must be devised to obtain a P2x2(S)= 10 46836_(1/4)5 IO(Z)'
normal matrix. It is also found that due to the nonlinearity, '
only normal Gaussian matrices can be generdt@thers not
respecting the Hermiticity and normalizibility could be ana- The eigenvalues are unfolded so that the mean spacing is
lyzed, but this is not of interest heje. unity. This is achieved by rescaling the spacing and renor-

Instead of directly attempting to produce random normalmalizing the spacing distribution so that the mean spacing
matrices, we begin with a random complex matrix and use abetween eigenvalues is unity,
optimization algorithm to obtain a normal matrix. The fol-
lowing algorithm is the simplest to implement but by no
meangs thge most efficienti) Prz)irametrize F;he normal mgtrix S=1.6623, p(S)=p(s)/10.4883, (26)
as before: Elements along the diagonal and above the diag-
onal are independent parameters. Elements below the diagBlots of the analytical form and the unfolded eigenvalues are
nal will be optimized. displayed in Fig. 1.

(i) Using the Box-Muller technique, generate random For normal matrices of size 26200 the exact analytical
Gaussian variables and construct a 2200 complex form for the spacing distribution can easily be found from
Gaussian matrix. This is the initial condition. Egs.(1)—(14),

i—-1 N

(=)

1

(25
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ensemble of complex matrices. One can define ensembles of
complex matrices with weights invariant under similarity
transformationgsee Appendix B of11]). These ensembles
will fall under =4 and experience a minimum of quartic
repulsion.(Getting analytical results for the statistics of the
eigenvalues is difficult, howeverEnsembles of complex
matrices with weight functions invariant under unitary trans-
formations other than the Gaussian are not factorable and are

L) v M |
P(S) for N = 200, 50 matrices

-
T

% not amenable to analytical analysis. For normal matrices we
can define identical ensembles to complex models invariant
0s | . under similarity transformations and as well define a wide

] range of ensembles invariant under unitary transformations
(as demonstrated in this papefrhe special case of real nor-
mal matrices was also shown to experience cubic repulsion
in the complex plane. As well, there are even more signifi-
seps cant differences between random normal matrices and more
i e T Y traditional random matrix models composed of Hermitian,
Spacing, S unitary, and real symmetric matrices, themselves being sub-
sets of normal matrices. Although numerical generation of
FIG. 2. The level spacing distribution®S) for N=200, ana- normal matrices is not as straightforward as for other types
lytical result(with eigenvalues unfoldgdand 50 numerically gen-  of matrices, we have shown that analytical results are often
erated 206200 normal matrices. much easier to obtain. What numerical information we could
@ 199 obtlili_n dol_?tsI ag_ree Wit_htf[he ttrr:etoret_ical reﬁ[ult: " f
eq_1(s 2 is a little disappointing that universality, in the sense o
Pood S) = ( 199 21 %) Zsiﬂl [e~e(s))], Brezin and Ze¢145),pis not ?ound for norma?/matrix models.
4 d - 27) The simple scaling arguments that lead to universal kernels
for other types of matrices do not work here. It may be
where eq(52)=2|q=0(52'/|!)_ Under the optimization algo- possible to rescal& to obtain a universal spacing distribu-
rithm it is found that many eigenvalues “leak” out into the tion P(S). This allows the potential of analytically exploring
complex plane. Adding a further constraint to keep the eithe statistics of complex eigenvalues, which was not possible
genvalues within a radius of20N—1~20 lengthens the before. Another interesting feature is the closed form expres-
generation time dramatically. Therefore, for this preliminarysions for the two point correlation functions in NGE, La-
study the eigenvalues were “pruned,” those falling outsideguerre @=0), and Legendre ensembles in the infinite matrix
r =18.1 were neglectedhe number was chosen so that edgelimit (see Table)l

199

effects would be eliminated as wellOverall, about one- In terms of physical applications it should be noted that
third of the eigenvalues were pruned. The results are distesults using the Ginibre ensemble of complex matrices can
played in Fig. 2. be duplicated with the normal Gaussian ensemble. Such

The slight deviation of the numerical and analytical re-Work includes modeling cellular structures by Le Caer and
sults for largeS is due to the leakage of eigenvalues. TheHo [4], two-dimensional quantum gravity by Morr{45],
small S behavior is not affected by the leakage. It is founda@nd Haake's work on generators of quantum dynamics for
that changing the initial conditions has little effect pS).  Systems with dissipatiof7]. It has recently been showa6]

It is also observed that lowering the threshold for the errothat Haake’s generator of dissipatid, in [17,7], is prop-

function by a factor of 10 has a negligible effect. erly represented by a normal matrix rather than a complex
one. This result strengthens the idea that the eigenvalues of

these generators universally exhibit cubic repulsion when
dissipative dynamics is present.

It has been shown that eigenvalues obtained from random The results obtained in this work give a more complete
normal matrices experience a minimum of cubic repulsion inpicture of the statistics of eigenvalues from random matrices.
the complex plane. Even though normal matrices are subsethe normal matrix model, a link between the Dyson en-
of complex matrices we have demonstrated that Gaussiasembles and the Ginibre ensemble, has a rich structure where
normal matrix models yield the same results as the Ginibrénteresting results can still be found.

V. CONCLUSION
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