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Universal cubic eigenvalue repulsion for random normal matrices

Gary Oas*
Ventura Hall, Stanford University, Stanford, California 94305

~Received 11 December 1995!

Random matrix models consisting of normal matrices, defined by the sole constraint@N†,N#50, will be
explored. It is shown that cubic eigenvalue repulsion in the complex plane is universal with respect to the
probability distribution of matrices. The density of eigenvalues, all correlation functions, and level spacing
statistics are calculated. Normal matrix models offer more probability distributions amenable to analytical
analysis than complex matrix models where only a model with a Gaussian distribution is solvable. The
statistics of numerically generated eigenvalues from Gaussian distributed normal matrices are compared to the
analytic results obtained and agreement is seen.@S1063-651X~97!05801-7#

PACS number~s!: 05.45.1b, 03.65.2w, 02.10.Sp, 02.30.Fn
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I. INTRODUCTION

Random matrix theory~RMT! @1,2# has found much suc
cess in phenomenological models describing a wide var
of physical systems, from discretization of moduli space@3#
to the statistics of the cells in the skin of a cucumber@4#.
RMT is the study of eigenvalues derived from random e
sembles of matrices with stochastic elements specified b
probability densityP(M )dM in the space of matrices. Mos
interest is in examining the properties of the eigenval
induced from the transformation to the eigenvalue ba
Early work consisted of using real symmetric, Hermitia
unitary, and real quarternion matrices@5#, the eigenvalues o
which are either real or unimodular~and termed one-
dimensional eigenvalues here!.

Recently several groups have begun to consider phys
applications of matrix models composed of complex ma
ces. Introduced in the early 1960s by Ginibre@6#, it took
decades for others to consider applications. As the proba
ity distribution is not invariant under similarity transforma
tions, the diagonalizing parameters must be integrated ou
brute force. It was found that only a distribution with
Gaussian weight~Ginibre ensemble! could be solved. The
Ginibre ensemble was later found to exhibit cubic eigenva
repulsion in the complex plane@7,2#. Such models are o
interest in characterizations of quantum chaos. Cu
quasienergy level repulsion is a key signature of class
chaos within a quantum dissipative system, as defined
Haake@7#.

Normal matrices are discussed in most matrix theory te
~see@8,9#!. Defined by the sole constraint that they commu
with their adjoint, they have the property of being the mo
general matrix that can be diagonalized by a unitary tra
formation. The normal matrix model was first introduced
showing how the Laughlin wave function could be mode
by it and offered some generalizations to inhomogene
fields @10#. In @11# the statistics of eigenvalues of rando
normal matrices were first explored.

In this paper the universality of cubic eigenvalue rep
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sion in the complex plane for ensembles of random norm
matrices will be shown. In Sec. II the probability distributio
in the space of matrices, all correlation functions, and
eigenvalue densities will be obtained. In Sec. III the lev
spacing statistics of the eigenvalues obtained will be deriv
The term level spacing is borrowed from the Wigner-Dys
ensembles and will represent here the spacing in the com
plane. In Sec. IV eigenvalues of numerical generated nor
matrices will be studied and compared to the analytical
sults.

II. PROBABILITY DISTRIBUTIONS, CORRELATION
FUNCTIONS, AND EIGENVALUE DENSITIES

We begin by defining the joint probability distributio
~jpd! within the space of normal matrices,

PN~M !5Cexp@2Tr„V~M ,M†!…#. ~1!

Only potentials which are Hermitian will be considere
V(M ,M†)5V(M ,M†)†. As a result, the joint probability dis
tribution for the eigenvalues will be rotationally symmetr
in the complex plane. Normal matrices are the most gen
matrices which can be diagonalized by a unitary transform
tion, M5UZU†, so that the measure and the weight are
variant. Thus it is simple to derive the Jacobian for the tra
formation to the eigenvalues.

Proceeding analogously to the Hermitian matrix case@12#,
the metric in the space of normal matrices is defined as

~ds!25Tr@dM†dM #5Tr„Ud„U†ZU…U†Ud„U†Z*U…U†
…

5Tr„†dS,Z‡†dS,Z* ‡1~†dS,Z‡dZ*1dZ†dS,Z* ‡!

1udZu2…5c(
i,k

udSik~zk2zi !u21(
i

udzi u2, ~2!

where dS5UdU†52dUU† is anti-Hermitian andc is an
overall constant.

Using the standard Riemannian volume form with th
metric, we get
205 © 1997 The American Physical Society



ry

es
r-
-
n
i-
c

le
r

s-
o
la

n-

th
n
an

s

.

e

nks

-
lue

r-
od.
the
No
la
ical
p-

rre-
nc-
se

the

as
lly
assi-
to

ion

o a

ne
us

le

lus
t

is
eter

nd

206 55GARY OAS
dm~M !→dm~z!5~dV!uD~z!u2dz1
~0!`dz2

~0!`•••`dzN
~0!

`dz1
~1!`•••`dzN

~1! , ~3!

where dV is the volume of the unitary group U(N) and
D(z) is the well known Van der Monde determinant,

uD~z!u25)
i, j

N

uzj2zi u2. ~4!

If we consider weights which are invariant under unita
transformations we can factordV out,

PN~z!5C8uD~z!u2expF2(
i51

N

V~zi ,zi* !G , ~5!

whereC8 is a normalization constant.
Considering a Gaussian weightV5uzu2 we notice that the

jpd is identical to Ginibre’s ensemble of complex matric
@6#. The model with this weight function is termed the no
mal Gaussian ensemble~NGE!. It is clear that Gaussian en
sembles of complex matrices and the NGE are identical. A
result derived here for the NGE will also be valid for Gin
bre’s ensemble of matrices. This is of little surprise sin
Tr@M†M #5Tr@MM †#.

The difference occurs when considering other ensemb
For complex matrices the parameterb ~defined as the powe
of the Van der Monde determinant appearing in the jpd! is a
function of the weight. In fact, only models involving Gaus
ian weights have ever been studied as this is the only n
trivial model which allows a separation of radial and angu
parameters. For normal matricesb52 regardless of the
weight and it is possible to study a wide variety of e
sembles.

For matrix models with one-dimensional eigenvalues
traditional method of analysis employs a basis of orthogo
polynomials. These allow the reduction of the determin
upon integration of a number of eigenvalues@2#. For com-
plex eigenvalues we can also introduce an orthogonal ba
If a polar basis is chosen@andPN(z) is rotationally symmet-
ric#, it is simple to verify that thez’s themselves form an
orthogonal basis. A basis oforthogonal monomials, $f%, is
defined,

f l~zi ![
zi
l

Nl
1/2, ~6!

whereNl5*0
`dr2r 2lexp@2V(r)# is a normalization constant

The jpd can then be expressed as

PN~z!5C8e2(
i51

N

V~zi ,zi* !detKN~zi ,zj !u i , j51,N , ~7!

where the ‘‘kernel’’ is

KN~zi ,zj !5 (
l50

N21

f l~zi !f l* ~zj !. ~8!

The weight function is deliberately factored out of the kern
since all of the angular dependence is contained withinK.
y
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Similarly to Hermitian matrix models, whenN2n eigen-
values are integrated out of the jpd, the determinant shri
by N2n columns and rows@11#. This property allows the
n-point correlation function to be derived easily,

Rn~z1 , . . . ,zn![
N!

~N2n!! E )
i5n11

N
1

2
du idr i

2PN~z!

5e2(
i51

n

V~r i !detKN~zi ,zj !u i , j51,n . ~9!

The prefactorN!/(N2n)! is due to the ordering of eigen
values. The two-point correlation function and eigenva
density are

R2~z,w!5
e2V~z!2V~w!

p2 @r~z!r~w!2K~z,w!K~w,z!#,

r~z!5e2V~z! (
l50

N21 uzu2

Nl
. ~10!

In deriving expressions for the correlation functions, o
thogonal monomials provide a more economical meth
However, there are no simple recursion relations among
monomials as there are for the orthogonal polynomials.
recursion relation implies no Christoffel-Darboux formu
and no asymptotic analysis. However, we can find analyt
results for finiteN. It is not necessary to examine the asym
totic form of the monomials to get largeN forms.

In Table I various ensembles are defined and their co
sponding eigenvalue density and two-point correlation fu
tion are given. It should be noticed that several of the
ensembles allowglobal closed forms in the limitN→`.

III. LEVEL SPACING STATISTICS

In order to study the properties of random matrices,
statistical properties of the spacings between eigenvalues~or
level spacings! are examined. These statistics can be used
a definition of quantum chaos. The distinction of classica
integrable and chaotic systems can be seen in a semicl
cally quantized system as the transition from Poisson
Wigner-Dyson statistics of the nearest neighbor distribut
of the energy levels@13#. It has been shown@7# that if there
is dissipation in the system the level spacings underg
similar transition from a plane Poisson distribution~random
points in a plane! to Ginibre’s distribution@6# generated by
an ensemble of random complex matrices.

The distributions for eigenvalues in the complex pla
will require the definition of statistical quantities analago
to those defined for Hermitian matrix models@2#.

~i! The probability that no eigenvalue lies within a circ
of radiuss centered upon the pointw, thegap distribution, is
denoted asE(s,w). A related quantityE(s,w,e) is defined
as the probability that no eigenvalues lie within an annu
of outer radiuss, inner radiuse, and centered on the poin
w.

~ii ! The probability that no eigenvalues lie within th
same circle but one or more eigenvalues lie on the perim
is denoted asF(s,w).

~iii ! For an eigenvalue lying at the center of the circle a
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TABLE I. Ensembles of random normal matrices defined by their probability distribution. Also shown are the corresponding eig
density and two point function. For the NGE, Laguerrea50, and Legendre ensembles the closed form largeN result has been shown.

Ensemble Probability distribution Density,r r(r 1)r(r 2)2R2

NGE e2TrM†M 1

p

1

p2exp@2uz2wu2#

NQE e2Tr(M†M2gM†M†MM )
e2r22gr4

p
(l50
N21

r2l

Nl~g!

e2r1
2
2r2

2
2gr1

4r2
4

p2 KN~z1,z2!KN~z2,z1!

Laguerre e2Tr[ (M†M )1/21(a/2)ln(M†M )] e2rra11

2p
(l50
N21

r2l

G@2l1a12#
(l50
N21

~r1r2!
a11e2r12r2z1

l z2*
lz*1

mz2
m

4p2G@2l1a12#G@2l1a12#

Laguerre,a50 e2Tr(M†M )1/2 e2r

2pr
sinh~r!

e2r12r2

4p2r1r2
sinh~Az1z2* !sinh~Az1* z2!

Legendre 1,~evalsP unit circle! 1

p~12r2!2
1

p2 F 1

~12z1z2* !2~12z1*z2!
2G

Jacobi det@12(M†M )1/2#a ~12r!a

2p
(l50
N21

r2l

B@a11,2l12#

1

4p2 ( l50
N21

z1
lz2*

lz1*
mz2

m

B@a11,2l12#B@a11,2m12#

Gen. Gaussian e2Tr[M†M2(a/2)ln(M†M )]
e2r2ra

p
(l50
N21

r2l

GFl1 a

2
11G (l50

N21
~r1r2!

ae2r1
2r2
2
z1
lz2*

lz1*
mz2

m

p2GFl1 a

2
11GGFm1

a

2
11G
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no eigenvalues within the circle nor on the edge, this pr
ability is denoted byH(s,w).

~iv! The level spacing probabilityp(s,w) is the most
quoted quantity and is defined as the probability that o
eigenvalue lies at the center and one or more lies on
perimeter.

By taking differential areas at the center and at the per
eter of this circle, we can obtain all of the probabilities fro
the gap distribution. The argument is analagous to Meh
for one-dimensional eigenvalues and can be found in@11#.

E~s,w!5E $dz%PN~$z%!)
i51

N

@12x~zi ,s,w!#, ~11!

F~s,w!52
d

ds
E~s,w!, ~12!

H~s,w!52
d

de2
E~s,w,e!U

e50

, ~13!

p~s,w!52
d

ds
H~s,w!52

d

de2
F~s,w,e!U

e50

5
d

ds

d

de
E~s,w,e!U

e50

, ~14!

wherex is the characteristic function ande is taken as the
radius of an infinitesmal area centered at the center of
circle. These relations allow an elegant derivation of
level spacing distribution.
-

e
e

-
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e
e

All of the probability distributions considered here a
symmetric in thezi , hence the derivation of the gap distr
bution will be the same as in@2# ~see also@11#!. For the
circle centered at the origin we have the following:

E~s,0!5 )
i50

N21 F*s2
` dxexp„2V~x!…xj

*0
`dxexp„2V~x!…xj

G , ~15!

wherex5uzu2.
As a check on our results, we find the spacing distribut

for the NGE and compare with previously known results.
this case the probability distribution is translationally inva
ant, hence the result~15! is valid for all w. The result for
small s is

p~s!'2s32s51 1
7 s

72 11
12 s

9
••• . ~16!

This result is the same as for complex matrices derived
Haake@7#. The level spacing statistics at the origin for oth
ensembles of normal matrices can be found in@11#. Here we
are concerned with obtaining a universal result for the sp
ing distribution.

For ensembles other than Gaussian, the distributions
not translationally invariant and hence it will be necessary
resort to asymptotic approximations. Shifting the eigenva
coordinatez5z2w does not affect the measure or Van d
Monde determinant. The gap distribution can then be
pressed as,
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E~s,w!5)
i51

N E
0

`

dri
2du i@12x i~s

2!# P̃N~z!

5E
0

`

$d2z%H 12(
i51

N

x i~s
2!

1 (
iÞ j51

N

x i~s
2!x j~s

2!2•••J P̃N~z!

512(
i

N E d2zix i r̃~zi !

1(
i< j

N E d2zid
2zjx ix j R̃2~zi ,zj !2•••, ~17!

where f̃ (z)5 f (z2w) and x i is the characteristic function
for the i th eigenvalue. In the limits→0, and keeping only
the first two terms, we obtain

lim
s→0

E~s,w!'12Nps2r~w!. ~18!

The level spacing distributionp(s,w) can be found via
Eq. ~14!. First the gap distributionE(s,w,e) needs to be
derived. The derivation is the same as before except fo
modification to the characteristic function. Starting from E
~17!, we have

E~s,w,e!512(
i

N E d2zix i r̃~zi !

1(
i< j

N E d2zid
2zjx ix j R̃2~zi ,zj !2•••, ~19!

where nowx i5u(s22r i
2)u(r i

22e2). As an intermediate step
we find
y

-
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a
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H~s,w!52
d

de2
E~s,w,e!ue50

5N
d

de2Ee2

s2

dr2E dur~z1w!2
N21N

2

d

de2

3E
e2

s2E
e2

s2dr1
2dr2

2

4 E E du1du2R2

3~z11w,z21w!1•••ue50

52Npr~w!1p~N21N!

3E
0

s2dr2
2

2 E du2R2~w,z21w!2•••. ~20!

The last term exploits the symmetry inR2. For the level
spacing we have

p~s,w!52p~N21N!sE du2R2~w,se
iu21w!••• .

~21!

In order to find the lowest order contribution top(s,w) the
lowest order ofR2 will need to be found. For a model with
weighte2V(z) we have
R2~w,z1w!5e2V~w!e2V~z1w!(
l51

N

(
m50

N F r w2l~r 21zw*1wz*1r w
2 !m

NlNm
2

~zw*1r w
2 ! l~wz*1r w

2 !m

NlNm
G . ~22!
al
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ni-
n-
t the
n
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m
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tc.
a

The normalization factorNl is model dependent. It is easil
verified that terms withl50 and l5m vanish. All higher
order functions will have the same property.

The remaining angular integral overdu2 in Eq. ~21! in-
sures that no terms linear inz or z* appear. It is also appar
ent that the leading term inr w cancels~terms to orderz0).
This yields the lowest order ofR2 to bes2. Combined with
Eq. ~14!, it is found that the nearest level spacing is cubic
s ass→0. A few exceptions occur when the weight functio
vanishes asz vanishes. Specifically the Jacobi, Lague
(a.1), and generalized Gaussian (a.1) will have a higher
order repulsion. Our final result is as follows. Normal mat
models with normalizable Hermitian weight functions ha
eigenvalues experiencing a minimum of cubic repulsion
the complex plane.
n

It is also worthwhile to examine the case of real norm
matrices. Here the constraint is that the matrix commu
with its transpose. Such a matrix is diagonalizable by a u
tary transformation and will in general have complex eige
values. Retracing the steps above, it is easy to see tha
eigenvalues will also exhibit a minimum of cubic repulsio
in the complex plane.

IV. NUMERICAL RESULTS

Whenever discussing random matrix theory, it is alwa
of interest to include numerical simulation of large rando
matrices. These are used to verify the analytical proper
and supply support for asymptotic forms, conjectures, e
When dealing with normal matrices, however, we are in
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predicament. Consider the following problem: Write dow
an arbitrary 232 normal matrix that is neither Hermitian
unitary, nor real. It is not so simple. If one was asked to wr
down a Hermitian matrix, it could be done without thinkin
twice. For a normal matrix there is no simple parametri
tion. It would most likely require the commutator to be ca
culated and a solution found by trial and error. Likewise
you want a computer to generate normal matrices you m
give it a parametrization. For a 232 you can parametrize i
as follows, given that n11* Þn22* ~remember there are
N21N56 independent real elements within a normal m
trix!:

N5S n11 n12

n12* S n112n22
n11* 2n22*

D n22D . ~23!

For arbitraryN the constraint equations become nonline
and highly coupled. We will choose the following paramet
zation of normal matrices and define the independent
ments asni j ~those along the diagonal and above the dia
nal!. Define the elements that are constrained asf j i ~those
which lie below the diagonal!. For thej i th element the con-
straint equation is

f j i5
1

~nj j*2nii* !
Fni j* ~nj j2nii !1 (

k51

i21

nk j* nki2 (
m5 j11

N

nim* njmG
2

1

~nj j*2nii* !
F (
k51

i21

f jk f ik*2 (
m5 j11

N

fmif m j*

2 (
l5 i11

j21

~nl j* f l i2nil* f j l !G . ~24!

Notice that the term in the first bracket contains only
dependent elements. With this parametrization the proba
ity of obtaining normal matrices which are Hermitian, un
tary, orthogonal, or real symmetric matrices becom
infinitesimal for largeN. The subspaces for these types
matrices within the space of normal matrices are of mu
lower dimensionality. There are many solutions to this no
linear equation. Another method must be devised to obta
normal matrix. It is also found that due to the nonlineari
only normal Gaussian matrices can be generated.~Others not
respecting the Hermiticity and normalizibility could be an
lyzed, but this is not of interest here.!

Instead of directly attempting to produce random norm
matrices, we begin with a random complex matrix and use
optimization algorithm to obtain a normal matrix. The fo
lowing algorithm is the simplest to implement but by n
means the most efficient.~i! Parametrize the normal matri
as before: Elements along the diagonal and above the d
onal are independent parameters. Elements below the di
nal will be optimized.

~ii ! Using the Box-Muller technique, generate rando
Gaussian variables and construct a 2003200 complex
Gaussian matrix. This is the initial condition.
e

-

f
st

-

r

e-
-

-
il-

s
f
h
-
a
,

l
n

g-
o-

~iii ! Calculate the commutator and define the error fun
tion tr@N,N†#25E. The error function will be minimized be-
low a choosen threshold~a value of 0.2 is used!.

~iv! Use gradient descent to adjust the constrained e
ments. If the value ofE is below the chosen threshold, then
pass the matrix to the diagonalization routine. IfE has not
converged after 500 iterations, then reset the matrix and
to step 2.

The results of a preliminary numerical study based on th
algorithm are now presented. A full discussion of the algo
rithm used is to be found elsewhere@11#. Due to limited
computational resources and time, only 50 matrices of si
2003 200 have been analyzed. The level spacing statist
for the generated matrices is compared to the analytical
sult.

Before attempting to generate large normal matrices, t
algorithm was checked with 232 matrices. As these were
easily produced, 11 000 were generated and compared to
exact analytical result,

p232~s!5
p2s3

10.4683
e2~1/4!s2I 0S s24 D . ~25!

The eigenvalues are unfolded so that the mean spacing
unity. This is achieved by rescaling the spacing and reno
malizing the spacing distribution so that the mean spaci
between eigenvalues is unity,

S[1.6622s, p~S![p~s!/10.4883. ~26!

Plots of the analytical form and the unfolded eigenvalues a
displayed in Fig. 1.

For normal matrices of size 2003200 the exact analytical
form for the spacing distribution can easily be found from
Eqs.~11!–~14!,

FIG. 1. The level spacing distributionsp(S) for N52, analyti-
cal form, and 11 000 numerically generated normal matrices.
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p200~s!5S 1992 (
q51

199
eq21~s

2!

eq~s! D 2s)
i51

199

@e2s2ei~s
2!#,

~27!

where eq(s
2)5( l50

q (s2l / l !). Under the optimization algo-
rithm it is found that many eigenvalues ‘‘leak’’ out into th
complex plane. Adding a further constraint to keep the
genvalues within a radius ofA2sN21'20 lengthens the
generation time dramatically. Therefore, for this prelimina
study the eigenvalues were ‘‘pruned,’’ those falling outsi
r518.1 were neglected~the number was chosen so that ed
effects would be eliminated as well!. Overall, about one-
third of the eigenvalues were pruned. The results are
played in Fig. 2.

The slight deviation of the numerical and analytical r
sults for largeS is due to the leakage of eigenvalues. T
small S behavior is not affected by the leakage. It is fou
that changing the initial conditions has little effect onp(S).
It is also observed that lowering the threshold for the er
function by a factor of 10 has a negligible effect.

V. CONCLUSION

It has been shown that eigenvalues obtained from rand
normal matrices experience a minimum of cubic repulsion
the complex plane. Even though normal matrices are sub
of complex matrices we have demonstrated that Gaus
normal matrix models yield the same results as the Gin

FIG. 2. The level spacing distributionsp(S) for N5200, ana-
lytical result ~with eigenvalues unfolded!, and 50 numerically gen-
erated 2003200 normal matrices.
i-

s-

-

r

m
n
ets
an
e

ensemble of complex matrices. One can define ensemble
complex matrices with weights invariant under similari
transformations~see Appendix B of@11#!. These ensemble
will fall under b54 and experience a minimum of quart
repulsion.~Getting analytical results for the statistics of th
eigenvalues is difficult, however.! Ensembles of complex
matrices with weight functions invariant under unitary tran
formations other than the Gaussian are not factorable and
not amenable to analytical analysis. For normal matrices
can define identical ensembles to complex models invar
under similarity transformations and as well define a w
range of ensembles invariant under unitary transformati
~as demonstrated in this paper!. The special case of real nor
mal matrices was also shown to experience cubic repuls
in the complex plane. As well, there are even more sign
cant differences between random normal matrices and m
traditional random matrix models composed of Hermitia
unitary, and real symmetric matrices, themselves being s
sets of normal matrices. Although numerical generation
normal matrices is not as straightforward as for other ty
of matrices, we have shown that analytical results are o
much easier to obtain. What numerical information we co
obtain does agree with the theoretical result.

It is a little disappointing that universality, in the sense
Brezin and Zee@14#, is not found for normal matrix models
The simple scaling arguments that lead to universal kern
for other types of matrices do not work here. It may
possible to rescaleS to obtain a universal spacing distribu
tion P(S). This allows the potential of analytically explorin
the statistics of complex eigenvalues, which was not poss
before. Another interesting feature is the closed form expr
sions for the two point correlation functions in NGE, La
guerre (a50), and Legendre ensembles in the infinite mat
limit ~see Table I!.

In terms of physical applications it should be noted th
results using the Ginibre ensemble of complex matrices
be duplicated with the normal Gaussian ensemble. S
work includes modeling cellular structures by Le Caer a
Ho @4#, two-dimensional quantum gravity by Morris@15#,
and Haake’s work on generators of quantum dynamics
systems with dissipation@7#. It has recently been shown@16#
that Haake’s generator of dissipation,D, in @17,7#, is prop-
erly represented by a normal matrix rather than a comp
one. This result strengthens the idea that the eigenvalue
these generators universally exhibit cubic repulsion wh
dissipative dynamics is present.

The results obtained in this work give a more comple
picture of the statistics of eigenvalues from random matric
The normal matrix model, a link between the Dyson e
sembles and the Ginibre ensemble, has a rich structure w
interesting results can still be found.
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